Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior

نویسنده

  • Ki-Won Song
چکیده

Using a strain-controlled rheometer, the dynamic viscoelastic properties of aqueous xanthan gum solutions with different concentrations were measured over a wide range of strain amplitudes and then the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a broad range of angular frequencies. In this article, both the strain amplitude and concentration dependencies of dynamic viscoelastic behavior were reported at full length from the experimental data obtained from strain-sweep tests. In addition, the linear viscoelastic behavior was explained in detail and the effects of angular frequency and concentration on this behavior were discussed using the well-known power-law type equations. Finally, a fractional derivative model originally developed by Ma and Barbosa-Canovas (1996) was employed to make a quantitative description of a linear viscoelastic behavior and then the applicability of this model was examined with a brief comment on its limitations. Main findings obtained from this study can be summarized as follows: (1) At strain amplitude range larger than 10%, the storage modulus shows a nonlinear strain-thinning behavior, indicating a decrease in storage modulus as an increase in strain amplitude. (2) At strain amplitude range larger than 80%, the loss modulus exhibits an exceptional nonlinear strain-overshoot behavior, indicating that the loss modulus is first increased up to a certain strain amplitude

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Dependent Rheology of Concentrated Xanthan Gum Solutions

The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum solutions in a wide variety of shear flow conditions. In order to analyze the time-dependent behavior, start-up, interrupted shear flow, step shear flow and cyclic shear flow experiments have been conducted in this work.

متن کامل

Low Flux Rheology of HPAM and Xanthan in Porous Media Summary

This report clarifies the rheology of xanthan and partially hydrolyzed polyacrylamide (HPAM) solutions in porous media, especially at low velocities. Previous literature reported resistance factors (effective viscosities in porous media) and an apparent shear thinning at low fluxes that were noticeably greater than what is expected on the basis of viscosity measurements. The polymer component t...

متن کامل

Extensional flow of blood analog solutions in microfluidic devices.

In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic an...

متن کامل

Rheology of Hydrophobically Associating Polymers for Oilfield Applications

Water-soluble hydrophobically associating polymers are examined with particular emphasis on their rheology for oilfield applications. The incorporation of a small amount (less than 1 mol%) of hydrophobic groups into the polymer backbone of a water-soluble polymer dramatically alters the rheological properties of the resulting material. Associating polymers have potential for use in mobility con...

متن کامل

Rheological Differences of Waxy Barley Flour Dispersions Mixed with Various Gums

Rheological properties of waxy barley flour (WBF) dispersions mixed with various gums (carboxyl methyl celluleose, guar gum, gum arabic, konjac gum, locust bean gum, tara gum, and xanthan gum) at different gum concentrations were examined in steady and dynamic shear. WBF-gum mixture samples showed a clear trend of shear-thinning behavior and had a non-Newtonian nature with yield stress. Rheolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006